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Modal Analysis of the “Gap Effect” in Waveguide
Dielectric Measurements

SCOTT B. WILSON

Abstract —In wziveguide measurements on dielectric slabs, small air gaps
between the guide walls and the dielectric sample are found to be capable
of radically altering the complex reflection and transmission coefficients of
the excitation mode. The modal-analysis representation is used to compute
these coefficients for low- and high-loss samples with air gaps.

The “gap effect” is explained qualitatively by considering the influence
of the dominant “slab mode,” which focuses its energy into the dielectric
slab, and the dominant “gap mode,” which focuses its energy into the air
gap.

An experimental approach, which consists of filling the air gap with
conducting paste, is shown to essentially correct the problem altogether.

I. INTRODUCTION

The effect of the air gap in the characterization of high-dielec-
tric materials, although not neglected (a number of perturbation
techniques have been attempted [1]), has certainly been under-
estimated. Gaps on the order of a few percent, which are caused
by imperfect sample fit in the waveguide, can produce errors on
the order of 100 percent in the determination of the complex
dielectric constant. The analysis reported here shows that, among
many other effects, the inferred dielectric constant may even be
larger than the true dielectric constant, a previously unsuspected
result.

The experiment modeled in this work is performed using a
rectangular waveguide excited by a TE,, mode traveling in the
— z direction. A dielectric slab cut to the guide dimensions is
placed in the guide and the reflected and transmitted powers are
measured as a function of frequency. The geometry treated here,
shown in Fig. 1, allows the sample to fit imperfectly into the
guide by having a height smaller than that of the waveguide,
while the sample width is equal to the guide width. Gaps at the
end of the sample, which occur when the sample width is not
equal to the guide width, are believed to have a minimal effect
on such measurements since the exciting TE;, mode has a
zero electric field at these walls. Measurements conducted by
Champlin and Glover confirm this belief [2].

The calculation proceeds by writing down the waveguide modes
for the filled and unfilled portions of the guide. Overlap integrals
of these modes are calculated in order to satisfy the electric and
magnetic field boundary conditions at the air-slab interfaces,
and the reflectance and transmittance coefficients of the TE,,
wave are determined. Since this is a complete description of the
problem, the accuracy of the solution for all gap sizes is only
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affected by the number of modes which are included in the
calculation.

II. MODAL ANALYSIS

Wexler, [3] introduces a general method for solving waveguide
discontinuity problems. The problem at hand is a degenerate case
of Wexler’s boundary reduction in which discontinuities are _
produced by the slab rather than a change in guide dimensions.
Filled and unfilled portions of the guide are described by differ-
ent sets of orthogonal modes, and these modes are then used in
order to satisfy the continuity of the transverse electric and
magnetic fields across the slab faces at z=0and z=—1.

Let
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describe the total transverse electric and magnetic fields ex-
panded in terms of the transverse fields of the waveguide modes
€, (x,y,z) and h,(x,y,2) for z> 0. Here u, is the coefficient
of the “unfilled” mode i, and p the reflection coefficient of mode
0, the TE ; excitation mode.

In general, similar field descriptions must be written for the
z < —t portion of the guide; however, the symmetry about the
transverse plane at z = — ¢ /2 allows the problem to be solved by
considering only the z = 0 discontinuity. The problem is treated
as an equivalent transmission line T network with upper-arm
impedances Z;; — Z,, and common branch impedance Z,,. These
impedances can be computed by considering symmetric and
antisymmetric excitations, that is, by applying open- or short-cir-
cuit conditions at the central plane [3].

A second exploitation of this symmetry appears in the form of
the transverse fields in the filled portion of the guide, 0 >z > — ¢,

E‘r= Zf)(1+sjj)g)"j (3)

and
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where the fact that s, =0 for j+k has been used [3]. The
scattering coefficient s,, is given by
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for symmetric and antisymmetric excitations, where ¢ is the
length of the sample, y;, is the propagation constant of the
“filled” mode j, and f, is its coefficient. Letting o* and p® be the

reflectance coefficients with these excitations, the reflectance and
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Fig. 1. Geometry of the dielectric slab in the wavegmde.

transmittance of the TE,, mode for the original problem are
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p= (6)
Given that the modés in the filled and unfilled sections satisfy
the following orthogonality relations:

La,jxfz,k-di-=0 and L?ujxhuk~dA=O (1)

for j+ k, then satisfying the continuity equations of the total
transverse electric and magnetic fields of (1) to (4) across the
discontinuity at z = 0 yields the equations
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where the integrals run across the waveguide cross section A,
—a/2<x<a/2and —b/2 < y<b/2. The coefficients u, have
been eliminated from these equations, which can now be used to
solve for the unknown coefficients f, and p.

III. MoDbEs

The modes for the filled portion of the guide have been
classified [4] as LSM (longitudinal-section magnetic) and LSE
(longitudinal-section electric) waves. Although the usual set of
TE and TM modes could be used to describe the unfilled portion
of guide, the problem formulation is clearer if LSM and LSE
modes are used in both sections. (If the guide width « is allowed

to tend toward infinity with this formulation, the geometry
becoimes that of parallel plates, and the complete problem can be
described using only LSM modes in both sections of the plates.)
The excitation mode is now the LSM, , mode, which is equivalent
to the TE;; mode.

It should be noted that the well-known trick [5] of solving a
waveguide problem by solving the corresponding parallel-plate
pfoblem with A — A, cannot be applied here because of the
dielectric nature of the obstacle.

The electric and magnetic fields for the filled guide modes are
given as follows:

LSM modes ( E waves):

¢E=¢,vxvxil, and H=—iwee v xIl, (10)
with
O, =y.(x,y)e "
LSE modes (H waves):

(11)
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with
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This is a generalization of the field solutions g1ven by Collin [6]
and Gardiol [7] for anisotropic media. Modes for the cases when
€, #¢€, or p,#p, cannot be derived from a single Hertzian
potential.

The Hertzian potentials for these waves are defined as follows:

I, lI/e(xy,Z)y——(\/——/yf)cos f.(y)e vp (15)

with
Dycosp,(b/2—y) b/2—dy<y<b/2
f.(y) ={ Dycos(p,y+A4) -b/2+di<y<b/2-d,
D,cos p,(b/2+ y) -b/2<y<-b/2+4d,
(16)

where the y component of the wave vector in air (@) and
dielectric (d) is

2
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and the contiriuity of the transverse fields at y= — b/2+ d; and
y=b/2—d,; gives
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The complex transverse wavenumbers p, and p, are solutions
to (17) and (20), the complex coefficients D;, D,, D, and A are
found by satisfying the continuity of the E and H tangential
field components at y =b/2—d, and y=—b/2+ d,, and k, =
2a/A.

The following unitless parameters will be useful in describing
the sample geometry:

d+d,  d+d,
T d+d,+d, b
and
d .
@-g  ithd<d,.

a is the “gap size” and runs from zero, the case with no gap, to
one, the case with no sample. £ describes the “registration” of
the sample within the guide and runs from zero, with the sample
flush against the lower wall, to one, with the sample centered in
the guide.

Mode Types

The LSM and LSE modes of this geometry were studied in
detail by Pincherle [4] for lossless dielectric materials. He showed
that as the dielectric constant is increased, the energy in these
modes is focused into the high-dielectric material. However,
when the sample is lossy, some of the modes focus their energy
into the air gap instead of the dielectric material. (In the limiting
case when the slab becomes an ideal conductor these modes
become the modes of an unfilled waveguide of reduced height.)
We shall refer to the modes that focus their epergy into the
dielectric material as slab modes and the modes that focus their
energy into the air gap as gap modes. The distinction between
these two types of modes is introduced only as a means for
qualitatively describing the effect of the air gap. Both types of
modes are solutions to the fundamental equations (16) and (19)
and must be considered in the description of the total electric and
magnetic fields.
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Fig 2. Return loss spectrum for the TiO, sample: --- experiment; ——
modal-analysis model; -- ... model with no air gaps (calculated).
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Fig. 3. Insertion loss spectrum for the Ti0, sample: --- experiment; ———
modal-analysis model; - - - model with no air gaps (calculated).

The lowest order slab mode has a propagation constant y @ ‘/a
like that of the TE;, mode of a completely filled waveguide, and
its attenuation is increased as the slab becomes more lossy. The
lowest order gap mode, since it focuses its energy in the air gap,
has a propagation constant like that of the TE,, mode of an
unfilled waveguide, and its attenuation is decreased as the slab
becomes more lossy. The interplay of these two modes will help
explain two sets of measurements on lossy dielectric samples in
the next section.

The distinction between the two types of modes is lost for
higher order modes; i.e., there is no dominant focus of the energy
into either the air gap or the slab.

IV. COMPARISON WITH EXPERIMENT

Two sets of waveguide measurements that illustrate the effect
of the air gap on low-loss and high-loss dielectric samples are
described below. ’

The first anomaly is illustrated in Figs. 2 and 3. These |R|?
and |T|?> measurements running from 30 to 40 GHz were on a
TiO, single-crystal sample. A great deal of structure is present
that cannot be attributed to the simple front and back face
interference spectrum of the dominant mode. Also shown in Figgs.
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Fig. 4. Triangular points display the dispersion of the SBN complex dielec-
tric constant. The dashed lines display the complex dielectric constant for a
frequency-independent modal-analysis fit of the experimental data

2 and 3 are the |R|> and |T|* spectra produced by a best fit
modal-analysis model as well as the theoretical spectra for the
same slab with no gap.

TiO, is a very low loss, high dielectric material; consequently,
there are many propagating modes within the slab. In the pres-
ence of the air gap these modes are strongly coupled to the
excitation mode at particular frequencies, resulting in the ex-
hibited resonance phenomenon. The frequency at which a par-
ticular resonance occurs is a function of ¢, a, and @ as well as
both ¢, and €, since TiO, is anisotropic.

Given that t=0.1073 cm, the values ¢, =153.9+0.2i, ¢, =
80.0+0.2i, a=2.48%x1072, and ©=0.1 were determined-by
matching the placement and magnitudes of the major resonance
peaks of the experimental spectrum. If the real part of the
dielectric constant had been calculated by noting the frequency
at which |R|* is a minimum, then a value #(¢,) =152.7, which is
slightly lower than the true value %#(¢;) =153.9 calculated by the
modal-analysis model, would have been obtained. However, if
the sample had been situated nearly flush against the guide wall,
Q =~ 0, the |R|*> minimum would have shifted to a lower frequency
than the no-gap case, thus predicting an erroneously high dielec-
tric constant. The case in which the sample is completely flush
against the guide wall is even more spectacular; the dominant
peak (|R]? — 0) is split into two equal peaks, one on each side of
the no-gap dominant mode peak.

The differences between the model and experimental plots
could be due to the nonrectangularity of the sample, gaps along
the sides of the sample (which may account for some of the
smaller resonances), and a nondiagonal € caused by a sample cut
not exactly along the dominant axis.

It is readily noted that the presence of the air gap has not
produced a drastic error in the determination of the dielectric
constant. If, however, a spectrum had been taken that did not
include the dominant mode peak, one of the other peaks could
have been interpreted as such, and a very poor estimate for #(¢,)
would have been obtained.

A second set of measurements, running from 35 to 45 GHz, on
a high-loss strontium barium niobate (SBN) sample with =
0.0807 cm is now considered. Interpretation of |R|?> and |T|?
data through consideration of the dominant mode only yields a
dispersive dielectric constant, shown in Fig. 4, although it is
believed that this material should have a relatively frequency
independent dielectric constant over this band.
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The modal-analysis fit with a frequency-independent dielectric
constant yields €, =251+122i, €, =355+57i, a=1.48X 1072,
and € = 0.0. Since the material is noticeably lossy, the previously
described gap modes have begun to have an effect on the power
distribution in reflection and transmission. A nonnegligible
amount of energy, which normally would have been reflected by
the dielectric in the no-gap case, is coupled into these modes,
causing a reduction in the magnitude of |R|%. The frequency
dependence of |T|* is due to beating of the lowest order slab
mode with the lowest order gap mode.

Although very little energy is initially coupled into the gap
mode, it is only minimally attenuated during its propagation
through the filled portion of the guide, while the slab mode,
which initially carried most of the transmitted energy, is highly
attenuated. Because of these offsetting effects, these two modes
have coupled roughly the same amount of energy into the domi-
nant mode transmitted wave of the unfilled region z <t The
difference in their propagation constants causes a rapidly varying
phase difference as a function of frequency, which consequently
causes the beating of the two waves.

V. CORRECTIONS FOR THE AIR GAP

Simple perturbation formulas that attempt to correct for the
effect of the air gap in waveguide dielectric measurements have
been offered [1). These expressions consider only the distorted
TE,, mode, and, consequently, are valid over a very small range
of material parameters and gap sizes. The corrections offered by
these formulas often produce errors larger than the uncorrected
results.

An experimental approach, which consists of filling the air gap
with a conducting paste, almost completely alleviates the effect of
the air gap.

Measurements were taken on the TiO, and SBN samples with
their air gaps filled with conducting paste. The resulting TiO,
spectrum was almost identical to the no-air-gap spectra shown in
Figs. 2 and 3. (Only three extraneous resonances were present
and all had a magnitude less than 0.5 dB.) The resulting SBN
spectrum, when interpreted with the dominant mode only, yielded
a dielectric constant within 1 percent of its true value.

The filled-gap geometry was treated with the modal-analysis
model and corroborated the findings of the experiments. The
geometry for this model is that of a waveguide with a reduced
cross section from z=0 to z=—¢ The offending gap modes
have been removed, and the dominant mode is the TE,, mode in
a waveguide of reduced height, b(1-- «). Thus, when a <1, the
effect of the filled gap is negligible.

VI. DisCUSSION

The determination of the dielectric constant for high-dielectric,
lossless samples is not greatly affected by the presence of an air
gap if enough of the frequency spectrum can be swept in order to
ensure that the dominant mode interference spectrum can be
identified. If one of the higher order mode resonances is incor-
rectly interpreted as the dominant mode resonance, then a very
poor determination of the dielectric constant will be obtained. It
should be noted that filling the air gap with an ideal conductor
for such samples almost completely rids the spectra of the
offending resonances.

The area in which air gaps are of the greatest concern seems to
be in the measurement of lossy dielectric samples. It is in such
samples that the gap modes drastically alter the power distribu-
tion of the reflection and transmission by allowing energy to seep
around the sample. Simply taking more care in the sample
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preparation does not seem to be an adequate solution, since gaps
less than 1 percent cause significant errors in the determination
of the dielectric constant.

The modal-analysis method presented here is very complicated,
and it does not provide a reasonable method for analyzing
waveguide dielectric measurements to determine sample permit-
tivity. It is hoped, however, that this analysis has shown that even
very small air gaps must be taken seriously in any experiment of
the type presented here.

Simple perturbation formulas that relate the “measured” di-
electric constant to the “actual” dielectric constant often produce
worse results than just accepting the measured value as the true
value. The best way of correcting for the air gap, it would seem,
is to fill the gap with a conducting paste. The resulting measure-
ments produce inferred dielectric constants that are very close to
the true values so long as the gap is small.
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Abstract — A large-signal HEMT model and a time-domain nonlinear
circuit analysis program have been developed. In this work a systematic
method to simulate HEMT mixers and design them for maximum conver-
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sion gain is presented. The transconductance-compression effect reduces
the mixer’s conversion gain at high frequencies. Simulation results from
mixers designed to operate at 10, 20, and 40 GHz show that a reduction in
parasitic conduction in the AlGaAs layer significantly increases the conver-
sion gain.

I. INTRODUCTION

The high electron mobility transistor (HEMT) is superior to
the GaAs MESFET when used in low-noise microwave ampli-
fiers. Recently the power performance of HEMT’s with a single
heterojunction [1] and double heterojunctions [2] have been in-
vestigated. Maas reported a HEMT mixer that operates at 45
GHz [3]. These promising results indicate that the HEMT will no
longer be confined to small-signal applications.

For both the small-signal and the large-signal application of
GaAs FET’s, computer-aided design (CAD) is very valuable in
the design process, especially in the design of monolithic in-
tegrated circuits, where tuning the circuits to optimize perfor-
mance is impractical. The accuracy and efficiency of computer
aided design and simulation rely on a well-developed device
model. In this paper we present a large-signal HEMT model and
a systematic CAD method in the time domain for the design and
simulation of HEMT mixers. The effect on mixer performance by
transconductance compression, which is a distinct feature of the
HEMT [4], has also been studied.

II. A LARGE-SIGNAL MODEL OF THE HEMT

Under large-signal operation, the element values of the HEMT
equivalent circuit vary with time and become dependent on the
terminal voltages. A large-signal model can be derived by consid-
ering the main nonlinear elements of the equivalent circuit. As
shown in Fig. 1, the elements of the large-signal HEMT model
assumed to be nonlinear in this work are the gate-to-source
capacitance, C,,, and the drain current source, /,;. Other circuit
elements are assumed to be linear.

The drain current source is represented by the current—voltage
equations derived in [5]. From the experimental results, G, of a
HEMT behaves quite similarly to that of a MESFET [6], [7],
because considerable charges in addition to the two-dimensional
electrons are modulated by the terminal voltages. Hence a valid
approach is to use a Schottky diode equation and

Cg& 0

C(V)=7T—7~= (1
3]

1- £

Vbl
where C,, and m are model parameters adjusted to fit the
measured values. V, is the built-in voltage for the Schottky gate
and V, is the internal gate voltage.

Compared to the large-signal MESFET models given in [8] and
[9], two diodes representing forward gate conductive current and
gate—drain breakdown current are neglected in our HEMT model;
hence this model is valid only when these two currents are absent
in device operation, e.g, in a mixer. The nonlinearity of gate-to-
drain capacitance, Cj,, is also neglected [7].

A GE HEMT with 0,25 pm gate length and 150 pm gate width
was chosen [1]. Bias-dependent § parameters and dc characteris-
tics were used to construct the large-signal model. Small-signal
equivalent circuits were extracted from the measured S parame-
ters at two bias points: Vo=-02V, Vo =20V and V¢ =
=05V, Vpe=20V. C,, and m in (1) were determined by a
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